Parity–time symmetric optical neural networks
نویسندگان
چکیده
Optical neural networks (ONNs), implemented on an array of cascaded Mach–Zehnder interferometers (MZIs), have recently been proposed as a possible replacement for conventional deep learning hardware. They potentially offer higher energy efficiency and computational speed when compared to their electronic counterparts. By utilizing tunable phase shifters, one can adjust the output each MZI enable emulation arbitrary matrix–vector multiplication. These shifters are central programmability ONNs, but they require large footprint relatively slow. Here we propose ONN architecture that utilizes parity–time (PT) symmetric couplers its building blocks. Instead modulating phase, gain–loss contrasts across adjusted means train network. We demonstrate PT ONNs (PT-ONNs) adequately expressive by performing digit-recognition task Modified National Institute Standards Technology dataset. Compared PT-ONN achieves comparable accuracy (67% versus 71%) while circumventing problems associated with changing phase. Our approach may lead new alternative avenues fast training in chip-scale ONNs.
منابع مشابه
Symmetric Discrete Universal Neural Networks
Given the class of symmetric discrete weight neural networks with finite state set (0, l}, we prove that there exist iteration modes under these networks which allow to simulate in linear space arbitrary neural networks (non-necessarily symmetric). As a particular result we prove that an arbitrary symmetric neural network can be simulated by a symmetric one iterated sequentially, with some nega...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Absence of Cycles in Symmetric Neural Networks
For a given recurrent neural network, a discrete-time model may have asymptotic dynamics di erent from the one of a related continuous-time model. In this paper, we consider a discretetime model that discretizes the continuous-time leaky integrator model and study its parallel, sequential, block-sequential and distributed dynamics for symmetric networks. We provide su cient (and in many cases n...
متن کاملCycle-symmetric matrices and convergent neural networks
This work investigates a class of neural networks with cycle-symmetric connection strength. We shall show that, by changing the coordinates, the convergence of dynamics by Fiedler and Gedeon [Physica D 111 (1998) 288] is equivalent to the classical results. This presentation also addresses the extension of the convergence theorem to other classes of signal functions with saturations. In particu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optica
سال: 2021
ISSN: ['2334-2536']
DOI: https://doi.org/10.1364/optica.435525